Search results for "Non self-adjoint Hamiltonian"
showing 6 items of 6 documents
Susy for non-Hermitian Hamiltonians, with a view to coherent states
2020
We propose an extended version of supersymmetric quantum mechanics which can be useful if the Hamiltonian of the physical system under investigation is not Hermitian. The method is based on the use of two, in general different, superpotentials. Bi-coherent states of the Gazeau-Klauder type are constructed and their properties are analyzed. Some examples are also discussed, including an application to the Black-Scholes equation, one of the most important equations in Finance.
On non-self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces
2018
In this paper we discuss some results on non self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that their eigenvectors form Riesz bases of a certain Hilbert space. Also, we exhibit a generalization of those results to the case of rigged Hilbert spaces, and we also consider the problem of the factorization of the aforementioned Hamiltonians in terms of generalized lowering and raising operators.
Heisenberg dynamics for non self-adjoint Hamiltonians: symmetries and derivations
2022
In some recent literature the role of non self-adjoint Hamiltonians, $H\neq H^\dagger$, is often considered in connection with gain-loss systems. The dynamics for these systems is, most of the times, given in terms of a Schr\"odinger equation. In this paper we rather focus on the Heisenberg-like picture of quantum mechanics, stressing the (few) similarities and the (many) differences with respected to the standard Heisenberg picture for systems driven by self-adjoint Hamiltonians. In particular, the role of the symmetries, *-derivations and integrals of motion is discussed.
Weak pseudo-bosons
2020
We show how the notion of {\em pseudo-bosons}, originally introduced as operators acting on some Hilbert space, can be extended to a distributional settings. In doing so, we are able to construct a rather general framework to deal with generalized eigenvectors of the multiplication and of the derivation operators. Connections with the quantum damped harmonic oscillator are also briefly considered.
Tridiagonality, supersymmetry and non self-adjoint Hamiltonians
2019
In this paper we consider some aspects of tridiagonal, non self-adjoint, Hamiltonians and of their supersymmetric counterparts. In particular, the problem of factorization is discussed, and it is shown how the analysis of the eigenstates of these Hamiltonians produce interesting recursion formulas giving rise to biorthogonal families of vectors. Some examples are proposed, and a connection with bi-squeezed states is analyzed.
One-directional quantum mechanical dynamics and an application to decision making
2020
In recent works we have used quantum tools in the analysis of the time evolution of several macroscopic systems. The main ingredient in our approach is the self-adjoint Hamiltonian $H$ of the system $\Sc$. This Hamiltonian quite often, and in particular for systems with a finite number of degrees of freedom, gives rise to reversible and oscillatory dynamics. Sometimes this is not what physical reasons suggest. We discuss here how to use non self-adjoint Hamiltonians to overcome this difficulty: the time evolution we obtain out of them show a preferable arrow of time, and it is not reversible. Several applications are constructed, in particular in connection to information dynamics.